DOXORUBICIN MAKES A COMPLEX WITH HORSERADISH PEROXIDASE: SPECTROSCOPIC STUDIES

SARAH KHAVARI-NEJAD

1Department of Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.

Abstract

Doxorubicin is an anticancer anthracycline inducing ROS-generation apoptosis in cancer cells. In this investigation, its consequence on the tertiary and secondary structure of HRPC, a critical enzyme involved in protection against oxidative stress, was studied. In vitro spectroscopic studies were done using, electronic absorption spectroscopy, fluorescence spectroscopy and circular dichroism spectroscopy. The electronic absorption spectra recorded from 300-700nm. K_d and ΔG were calculated from changes in the absorbance of 403nm. The enzymes intrinsic fluorescence obtained upon excitation at 297nm for the only tryptophan residue of HRPC decreased as a function of Doxorubicin increasing concentrations. Circular dichroism showed a little change in random coil of secondary structure of the enzyme. All measurements performed in citrate buffer 0.1M pH 4.0. Results indicated that Drug-protein complex formation occurred through binding of one molecule of Doxorubicin independently. The heme and tryptophan environment became more polar and the Drug-protein complex quenched the only tryptophan residue in the enzymes structure. These alterations suggest that Doxorubicin which reduces the activity of catalase, peroxidase and superoxide dismutase in cells, could alter significant cell protein conformations like horseradish peroxidase C.

Key words: Doxorubicin, Horseradish peroxidase C (HRPC), Drug-protein complex, Apoptosis, Conformational changes, Spectroscopy.

Abbreviations: Reactive oxygen species (ROS), Horseradish peroxidase C (HRPC), Circular dichroism (CD), Ultra violet-visible (UV-VIS)
References

3- Lüpertz R, Wätjen W, Kahl R, Chovolou Y, Dose- and time-dependent effects of doxorubicin on cytotoxicity, cell cycle and apoptotic cell death in human colon cancer cells, Toxicology. 271, 115–121.

4- Khavari-Nejad S, Doxorubicin-induced alterations in anti-ROS enzymes activity and cytochromes content in Candida utilis, Pharmacy and pharmacology. 3.9, 417-424.

5- Aldieri E, Bergandi L, Riganti C, Costamagna C, Bosia A, et al, Doxorubicin induces an increase of nitric oxide synthesis in rat cardiac cells that is inhibited by iron supplementation, Toxicol Appl Pharmacol. 185, 85–90.

8- Ashley N, Poulton J, Mitochondrial DNA is a direct target of anticancer anthracycline drugs, Biochem Biophys Res Commun. 378, 431–447.

9- Kotamraju S, Konorev E, A, Joseph J, Kalyanaraman B, Doxorubicin-induced apoptosis in endothelial cells and cardiomyocytes is ameliorated by nitrone spin traps and ebselen, Role of reactive oxygen and nitrogen species, J Biol Chem. 275, 33585-33592.

10- Nazhat NB, Jiang X, Kelsey SM, Blake DR, Newland AC, Morris CJ, Adriamycin stimulates proliferation of human lymphoblastic leukaemic cells via a mechanism of hydrogen peroxide (H₂O₂) production, Br J Haematol. 95(2), 339-44.

11- Bağriaçik EÜ, Uslu K, Yurtçu E, Stefek M, Karasu C, Stobadine inhibits doxorubicin-induced apoptosis through a caspase-9 dependent pathway in P815 mastocytoma cells, Cell Biol Int. 9, 979-84.

16-Tayefi-Nasrabadi H, Keyhani E, Keyhani J, Conformational changes and activity alterations induced by nickel ion in horseradish peroxidase, Biochimie 88, 1183-1197.

17-Fidy J, Paul KG, Vanderkooi J, Differences in the binding of aromatic substrates to horseradish peroxidase revealed by fluorescence line narrowing, Biochemistry 28, 7531-7541.

19-Daojin L, Baoming J, Jin J, Spectrophotometric studies on the binding of Vitamin C to lysozyme and bovine liver catalase, Lumin. 128, 1399-1406.

